I am trying to create the following data frame using for loops. Below is the table I want to output with purple highlighting the fields I want to create.
Below is the code I wrote. When I run it nothing happens. The three columns I'm looking for "Revenue Segment", "Expenses Segment", and "Profit Segment" do not get created. There is no error log either.
Any help is greatly appreciated!
regions = ['East', 'Central', 'West', 'Midwest']
target_var = ['Revenue', 'Expenses', 'Profit']
output_df = pd.DataFrame()
for i in regions:
for v in target_var:
# Create Counter
temp_df_1 = df_HA_noHA_append_5[df_HA_noHA_append_5['Region'] == i]
temp_df_1['Counter'] = range(len(temp_df_1))
temp_df_1['Counter_2'] = temp_df_1['Counter'] + 1
# Split
temp_df_1_AUM_min = temp_df_1[v].min()
percentile_value = 0.99
temp_df_1_AUM_max = temp_df_1[v].quantile(percentile_value)
# Cuts
No_Cuts = 3
# Intervals
Intervals = temp_df_1_AUM_max / No_Cuts
# Create Interval Table
Interval_Min = [temp_df_1_AUM_min, Intervals, Intervals*2]
Interval_Max = [Intervals, Intervals*2, temp_df_1_AUM_max]
Segment = ['Low', 'Medium', 'High']
# Dataframe
df_Intervals = pd.DataFrame({'Interval_Min': Interval_Min, 'Interval_Max': Interval_Max, 'Segment': Segment})
df_Intervals = df_Intervals[['Interval_Min', 'Interval_Max', 'Segment']]
# Create Segments
Segment = []
# Loop through the AUM 12_MONTH SNAPSHOT column
for i in temp_df_1[v]:
if i >= df_Intervals.iloc[0, 0] and i <= df_Intervals.iloc[0, 1]:
Segment.append(df_Intervals.iloc[0, 2])
elif i > df_Intervals.iloc[1, 0] and i <= df_Intervals.iloc[1, 1]:
Segment.append(df_Intervals.iloc[1, 2])
elif i > df_Intervals.iloc[2, 0]:
Segment.append(df_Intervals.iloc[2, 2])
else:
Segment.append('')
# print (df_Intervals)
# Append list to new column
temp_df_1[v] = Segment
output_df = output_df.append(temp_df_1)
Firebase Cloud Functions: PubSub, "res.on is not a function"
TypeError: Cannot read properties of undefined (reading 'createMessageComponentCollector')
I really need help in machine learningI wrote facial expression classification CNN model, with 3 layers
I wanted to make a "proxy" while ARP poisoning, it works with UDP and if I send a pkt to google I see it on my pc using wireshark
My script gets data from nested dictionary this way:
There are 3 models in my web applicationEvent (self-made), User (imported from django