Plotly: Scatter plot with dropdown menu and color by group

133
April 16, 2022, at 3:30 PM

I'm trying to make a scatter plot with 2 dropdown menus that select a data column (from a pandas data frame) to be plotted for x and y-axis, but I'm also wanting the points to be colored by a third categorical variable that is fixed (no dropdown needed for this one).

So far, I've been able to create the scatterplot correctly with functional dropdown menus thanks to another post, but I don't know how to colorize it by a third variable. Here's the code so far:

import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
df = px.data.tips().select_dtypes(['number']) # drop non numeric columns
fig = go.Figure(
go.Scatter(
    x=df['total_bill'],
    y=df['tip'],
    hovertemplate='x: %{x} <br>y: %{y}',
    mode="markers"))
fig.update_layout(
updatemenus=[
    {
        "buttons": [
            {
                "label": f"x - {x}",
                "method": "update",
                "args": [
                    {"x": [df[x]]},
                    {"xaxis": {"title": x}},
                ],
            }
            for x in cols
        ]
    },
    {
        "buttons": [
            {
                "label": f"y - {x}",
                "method": "update",
                "args": [
                    {"y": [df[x]]},
                    {"yaxis": {"title": x}}
                ],
            }
            for x in cols
        ],
        "y": 0.9,
    },
],
margin={"l": 0, "r": 0, "t": 25, "b": 0},
height=700)
fig.show()

Ultimately, I want the same scatterplot, but for points to be colorized by "Category". I can do this using plotly express, but without dropdown menus very easily:

df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", color="smoker", trendline="ols")
fig.show()

Anyone has an idea of how I could achieve this?

Answer 1

As mentioned below, I was able to find a solution for this by creating a new column with hexadecimal color codes corresponding to categorical levels in another column:

dfx = px.data.tips()
# create list of columns to iterate over for buttons
cols = dfx.columns.values.tolist()
# make list of default plotly colors in hex
plotly_colors=[
                '#1f77b4',  # muted blue
                '#ff7f0e',  # safety orange
                '#2ca02c',  # cooked asparagus green
                '#d62728',  # brick red
                '#9467bd',  # muted purple
                '#8c564b',  # chestnut brown
                '#e377c2',  # raspberry yogurt pink
                '#7f7f7f',  # middle gray
                '#bcbd22',  # curry yellow-green
                '#17becf'   # blue-teal
              ]
# create dictionary to associate colors with unique categories
color_dict = dict(zip(dfx['smoker'].unique(),plotly_colors))
# map new column with hex colors to pass to go.Scatter()
dfx['hex']= dfx['smoker'].map(color_dict)
#initialize scatter plot
fig = go.Figure(
    go.Scatter(
        x=dfx['total_bill'],
        y=dfx['tip'],
        text=dfx['smoker'],
        marker=dict(color=dfx['hex']),
        mode="markers"
    )
) 
# initialize dropdown menus
fig.update_layout(
    updatemenus=[
        {
            "buttons": [
                {
                    "label": f"x - {x}",
                    "method": "update",
                    "args": [
                        {"x": [dfx[x]]},
                        {"xaxis": {"title": x}},
                    ],
                }
                for x in cols
            ]
        },
        {
            "buttons": [
                {
                    "label": f"y - {x}",
                    "method": "update",
                    "args": [
                        {"y": [dfx[x]]},
                        {"yaxis": {"title": x}}
                    ],
                }
                for x in cols
            ],
            "y": 0.9,
        },
    ],
    margin={"l": 0, "r": 0, "t": 25, "b": 0},
    height=700
)
fig.show()

Answer 2

If you understand that you want to use the size column for color coding, you can do so by specifying that column as the marker color.

fig = go.Figure(go.Scatter(
    x=dfs['total_bill'],
    y=dfs['tip'],
    hovertemplate='x: %{x} <br>y: %{y}',
    mode="markers",
    marker=dict(color=df['size']) # update
))

Rent Charter Buses Company
READ ALSO
How can I read output from multiple Linux commands as input streams in a Python script

How can I read output from multiple Linux commands as input streams in a Python script

I'm trying to write a Python program that takes 2 very large files as inputThey are both currently compressed on disk in

91
Python Selenium on Chrome | find active element name

Python Selenium on Chrome | find active element name

I’m trying to get the name of the active element through selenium

84
Apache Beam Streaming from Kafka into Files over Fixed Window not working

Apache Beam Streaming from Kafka into Files over Fixed Window not working

In python, I am trying to have a streaming pipeline that ingests data from Kafka, and then writes that data in 30 second intervals into a file at the end of each intervalI am using the FlinkRunner

124